
Physics H7C Fall 1999 Solutions to Problem Set 2 Derek Kimball

“The purpose of physics is to understand the universe... the purpose of mathemat-
ics is, well, obscure to me...”

- Prof. Seamus Davis, UC Berkeley

If you have any questions, suggestions or corrections to the solutions, don’t hesitate
to e-mail me at dfk@uclink4.berkeley.edu!

If you’re interested in the possibility of magnetic monopoles, you might want to
look up a paper by Blas Cabrera (Physical Review Letters, vol. 48, no. 20,
1982 pp. 1378-81), where the possible detection of a single magnetic monopole
is discussed. There have been no further monopoles detected since that time, so
this report remains unconfirmed. There is also an excellent discussion of magnetic
monopoles in J.D. Jackson’s Classical Electrodynamics.

A discussion of the additional problem presented in discussion section this week
can be found in a paper by Robert Romer (American Journal of Physics vol. 50,
no. 12, 1982 pp. 1089-93).

Problem 1

(a)

We use Gauss’s law and choose a cylindrical surface of radius r centered on the axis
(we’ll call it ẑ) of the parallel plate capacitor, far from the edges of the capacitor
(r � b). Then:

∫
�E · d �A = Qencl

ε0
= κπr2/ε0, (1)

where κ is the surface charge density of the capacitor. We find directly from Eq.
(1) that:

�E = (κ/ε0)ẑ. (2)

Since there is a current I, the surface charge density changes with time by an
amount:

dκ

dt
=

I

πb2
, (3)

where we assume the current is flowing in the ẑ direction. So from Eqs. (2) and
(3), we find that:

d �E

dt
=

I

ε0πb2
ẑ. (4)

(b)

The Ampere-Maxwell equation, since there is no real (conduction) current J be-
tween the plates of the capacitor, reduces to:

∇× �B = µ0ε0
∂ �E

∂t
(5)

Then using our result from part (a) and integrating (we choose an Amperian loop
centered on the z-axis of radius r), we find:

∮
�B · d� = 2πrBφ =

µ0Ir
2

b2
(6)

Thus we find the magnetic field in the φ̂ direction to be:

Bφ =
µ0Ir

2πb2
. (7)

(c)

Far from the capacitor, there is no changing electric field and therefore only con-
duction current, so this is the familiar Ampere’s law:

∮
�B · d� = µ0Iencl, (8)

from which we find a magnetic field in the φ̂ direction:

Bφ =
µ0I

2πr
. (9)

which you will note is equivalent to Eq. (7) when r → b. Also note that inside the
capacitor, the magnetic field grows with r while far from the capacitor the field
falls as 1/r.

(d)

Let’s consider the electric field in two different regions. First, we’ll consider �E far
from the capacitor in the vicinity of one of the long axial leads (as in part (c)).
The changing current produces a changing magnetic field, and from Maxwell’s
equations we know this creates an electric field:

∮
�E · d� = −

∫
∂ �B

∂t
· d �A. (10)
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From Eq. (9), we see that ∂ �B
∂t is given by:

∂ �B

∂t
=

µ0

2πr
∂I

∂t
φ̂. (11)

We choose an Amperian loop as indicated in Fig. 1. There is no electric field
perpendicular to the wire (along r̂). This can be deduced from symmetry consid-
erations. Suppose there was an electric field in the r̂ direction. How does it know
whether to point in the +r̂ or −r̂ direction? That has to be decided by either the
direction of the current or the change in current. If we reverse these quantities,
the electric field in the r̂ direction should reverse. But on the opposite sides of the
wire, these quantities have opposite signs! The only way this can be true is if the
electric field in the r̂ direction is zero.

φ̂
r1

r2
Amperian Loop

r̂

ẑ

Axial Lead

Figure 1

Furthermore, we know that
the electric field must go to
zero as r → ∞. But since∮
�E · d� �= 0, it must be the

case that we have an electric
field in the ẑ direction which
varies with r. In other words,
it is apparent that the electric
field is larger closer to the wire
(z-axis).

This can be done explicitly, of
course, from Eqs. (10) and
(11):

E(r2)− E(r1) =
µ0

2π
∂I

∂t
ln r1/r2. (12)

Let’s now consider the electric field inside the capacitor, far from the fringe (as in
part (b)). Once again we apply Eq. (10), but in this case:

∂ �B

∂t
=

µ0r

2πb2
∂I

∂t
φ̂, (13)

We see that there is also a component of the electric field in the ẑ direction which
varies with r by utilizing similar arguments as those presented above:

E(r) = −µ0r
2

4πb2
∂I

∂t
. (14)

Problem 2

We can simplify the problem by thinking of C2 and C3 as two capacitors in series
or in parallel, respectively (Fig. 1). The capacitance C of a parallel plate capacitor
is given by:

C =
εA

d
(15)

where A is the area of the plates and d is the plate separation. So for C1:

C1 =
ε0A

d
(16)

C2

C3

C2a

C3a

C2b

C3b

Figure 2

For C2 we break up the problem into two parts, solving for C2a and C2b (shown
in Fig. 1), then determining C2 using:

C2 =
(
1
C2a

+
1
C2b

)−1

. (17)

From Eq. (15) we can find C2a and C2b, where:

C2a =
ε0A

d/2
= 2C1 (18)
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and

C2b =
εA

d/2
= 2

ε

ε0
C1. (19)

So with a wee bit of algebra, we find that:

C2 =
2C1

ε0/ε+ 1
. (20)

Similarly for C3, we break up the capacitor into two parts C3a and C3b, and then
solve for C3 using:

C3 = C3a + C3b. (21)

We use Eq. (15) to solve for C3a and C3b, finding:

C3a =
ε0A/2
d

=
1
2
C1 (22)

and

C3b =
εA/2
d

=
ε

2ε0
C1. (23)

So here the overall capacitance is given by:

C3 =
C1

2
(ε/ε0 + 1). (24)

Problem 3

The energy per unit volume U stored in an electromagnetic wave is given by:

U =
1
2

(
εE2 +

1
µ
B2

)
= εE2. (25)

If we then time average the energy, we find that the average energy stored is:

〈U〉 = εE2
0

∫
cos2 (ωt)dt =

εE2
0

2
. (26)

The average power P dissipated per unit volume is given by the relation:

P =
J2

σ
, (27)

where the current density is given by Ohm’s law:

J = σE. (28)

Once again taking the time average, we find:

〈P 〉 = σE2
0

2
. (29)

The Q-factor is the ratio of these two quantities, 〈U〉 and 〈P 〉, multiplied by the
frequency:

Q =
εω

σ
. (30)

If we plug in the numbers for seawater, we find that Q ≈ 1.1. This suggests that
decimeter waves cannot propagate very far in seawater, since the energy in the
wave falls to 1/e its initial value in about one decimeter!

Problem 4

First, we can write down the the electric and magnetic fields of the incident,
transmitted and reflected waves:

ẑEi sin (ky − ωt)
x̂Bi sin (ky − ωt)

ẑE0 sin (k0y − ωt)
x̂B0 sin (k0y − ωt)

ẑEr sin (ky + ωt)
x̂Br sin (ky + ωt) (31)

We note that k0 = nk since the transmitted wave is in glass. Then we can impose
the condition

|B| = |√εµE| (32)

on each of the waves, and demand that the Poynting vector, �S = 1
µ0
�E× �B, is along

the direction of propagation of the waves. This fixes the amplitudes and signs of

September 2, 1999



Physics H7C Fall 1999 Solutions to Problem Set 2 Derek Kimball

the magnetic fields with respect to the electric fields:

ẑEi sin (ky − ωt)
x̂
√
ε0µ0Ei sin (ky − ωt)

ẑE0 sin (k0y − ωt)
x̂
√
εµ0E0 sin (k0y − ωt)

ẑEr sin (ky + ωt)
−x̂√ε0µ0Er sin (ky + ωt) (33)

Now we consider the fields at y = 0, the interface between the block of glass and
vacuum. We require that the electric and magnetic fields parallel to the surface of
the glass satisfy:

E� = E′
�

B�

µ
=
B′

�

µ′ . (34)

After substitution, this leaves us with two equations:

−Ei + Er = −E0

Ei + Er =
√

ε

ε0
E0. (35)

We can then eliminate E0 from these equations yielding the ratio of Er to Ei:

Er

Ei
=

√
ε/ε0 − 1√
ε/ε0 + 1

. (36)

The energy is proportional to E2 (as can be readily seen by considering the Poynt-
ing vector �S), and in this case the index of refraction n =

√
ε/ε0. Thus the ratio

of reflected to incident energy Ur/Ui is given by:

Ur

Ui
=

(
Er

Ei

)2

=
(
n− 1
n+ 1

)2

. (37)

For n = 1.6, 5% of the energy is reflected.

Problem 5

If there were magnetic charges, a magnetic charge density ρm and a magnetic
current density �Jm would appear in Maxwell’s equations. To avoid confusion, let’s
denote the traditional electric charge density ρe and electric current density �Je.
We can place both of these, with some constants c1 and c2 which will be defined
later, in Maxwell’s equations to make them nice and symmetric:

�∇ · �E = ρe/ε0

�∇ · �B = c1ρm

�∇× �E = −∂ �B

∂t
+ c2 �Jm

�∇× �B = µ0ε0
∂ �E

∂t
+ µ0

�Je (38)

We can go further and work out a relationship between magnetic charge density
and current density. We begin by demanding that magnetic charges and currents
satisfy the continuity equation, namely:

�∇ · �Jm +
∂ρm

∂t
= 0. (39)

Then if we take the divergence of the new third Maxwell’s equation, we get:

�∇ · �∇× �E = −�∇ · ∂
�B

∂t
+ c2�∇ · �Jm. (40)

There is a vector derivative rule that states for any vector field �A, �∇ · �∇× �A = 0.
So the left-hand side of (40) is 0. The derivatives on the right hand side, �∇ and
∂
∂t , can be swapped and we get:

− ∂

∂t
�∇ · �B + c2�∇ · �Jm = 0. (41)

From the second Maxwell equation we know that �∇ · �B = c1ρm, so we find:

−c1 ∂ρm

∂t
+ c2�∇ · �Jm = 0. (42)

If we then apply the continuity equation, Eq. (39), we find that c1 = −c2 ≡ c.
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Thus the final form of Maxwell’s equations is:

�∇ · �E = ρe/ε0

�∇ · �B = cρm

�∇× �E = −∂ �B

∂t
− c �Jm

�∇× �B = µ0ε0
∂ �E

∂t
+ µ0

�Je, (43)

where c is a constant of proportionality between the magnetic charge unit and the
magnetic field it produces (the equivalent of 1/ε0 for electric fields).

Problem 6

Figure 3

x̂

ŷ

ẑ

Amperian Loop

Iron Plate

The first part of this problem is to
calculate the magnetic field �B inside
the magnetized iron. We can use the
auxiliary field �H to make our job a
little easier. We know that:

�H =
�B

µ0
− �M. (44)

Also, we have the relation:∮
�H · d�� = Ifree, (45)

where in our problem Ifree = 0 ev-
erywhere. We choose an Amperian
loop as pictured in Fig. 3 ( �M is in
the ẑ direction), taking advantage of
the planar symmetry of the problem
(we can assume the iron plate is infi-
nite). Since the component of �H per-
pendicular to the surface of the iron
plate must be zero based on symme-
try, and outside the iron plate �H → 0
as y → ±∞, we conclude that in fact
�H = 0 everywhere.

I would like to pause here and point
out that this conclusion is not en-
tirely trivial. If there is no free cur-
rent Ifree, that does not necessarily

mean that �H = 0 everywhere. The fundamental reason for this is that in order to
completely determine a vector field you must know both its curl and divergence.
Only in cases where we have planar, cylindrical, toroidal or solenoidal symmetry
can we conclude that �∇· �H = 0, and get �H quickly. This is different from Ampere’s
law with �B where we always know �∇ · �B = 0. So, be careful when using �H!

Anyhow, in this case it’s no problem, we find that:

�B = µ0
�M. (46)

inside the iron plate and zero outside the plate.

Figure 4

Iron Plate

R
R

← d → θ

θ

θ

�M

This problem now reduces to the tra-
ditional problem of solving for the
cyclotron orbit of a moving charged
particle in a magnetic field. An im-
portant difference, as pointed out by
Paul Wright in section (thanks!), is
that in this case we need to be care-
ful about relativistic corrections to
the radius of the cyclotron orbit.

To find the radius of the cyclotron
orbit R, we balance the Lorentz force
qvB with the relativistic centrifugal
force γmv2/R. This tells us:

R =
γmv

qB
. (47)

where R is the radius of the circular
orbit. If you take a look at Fig. 4,
hopefully the simple geometric argu-
ments suggested convince you that
in fact:

sin θ = d/R =
dqBc

γmvc
=
dqBc

pc
,

(48)

where θ is the deflection angle and
d is the thickness of the plate. The
rest of the problem is working out
the correct units...

First let’s get B in SI units. B = µ0M = 4π × 10−7 N/A2 ·1.5 × 1029 electron
magnetic moments per m3 ·9× 10−24 J/T, or about 1.7 T. Then dqcB = 108 eV,
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so sin θ ≈ θ = dqBc
pc = 10−2 rad. That’s only about half a degree, so not too big of

a deflection...

Problem 7

Fowles 1.4

The 3D wave equation is:

∇2f =
1
u2

∂2f

∂t2
(49)

We employ spherical coordinates, and since our wavefunction is a function only of
r, ∇2 is also a function only of r:

∇2f =
1
r2

∂

∂r

(
r2
∂f

∂r

)
. (50)

Plugging in the spherical harmonic wavefunction f = 1
r e

ı(kr−ωt), we get:

∇2f = −k2

r
eı(kr−ωt) = −k2f. (51)

If we evaluate the right-hand side of Eq. (49), and use the fact that k = ω/u, we
find that:

1
u2

∂2f

∂t2
= −k2f. (52)

which verifies that f is a solution to the 3D wave equation.

Problem 8

Fowles 1.6

(a)

Let’s begin by deriving

ug = u− λ
∂u

∂λ
. (53)

We can begin by using Fowles (1.33), the definition of the group velocity:

ug =
dω

dk
=
dω

dλ
· dλ
dk

, (54)

where k = 2π/λ is the wave vector. We can also express ω in terms of u and λ:

ω = ku =
2πu
λ

. (55)

If you take the derivative of ω with respect to λ:

dω

dλ
= −2πu

λ2
+
2π
λ

du

dλ
. (56)

Now we calculate dλ
dk :

dλ

dk
= −λ2

2π
. (57)

If we then substitute the expressions in Eqs. (56) and (57) into Eq. (54), we arrive
at our result:

ug = u− λ
∂u

∂λ
. (58)

(b)

We use similar tricks to derive the result:
1
ug
=
1
u
− λ0

c

dn

dλ0
. (59)

We begin by noting that

1
ug
=

dk

dω
=

dk

dλ0
· dλ0

dω
(60)

Let’s write the wave vector in terms of λ0 and n:

k =
2πn
λ0

(61)

We can then take some derivatives, and find that:

dk

dλ0
= −2πn

λ2
0

+
2π
λ0

dn

dλ0
(62)

and
dλ0

dω
= − λ2

0

2πc
. (63)

Substituting these results back into Eq. (60) gives us the answer we were looking
for:

1
ug
=
1
u
− λ0

c

dn

dλ0
. (64)

That’s all folks!
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